

PLAN DOCENTE DE LA ASIGNATURA: Herramientas para Prototipado Rápido CÓDIGO: 401799 CURSO ACADÉMICO: 2025-2026

PROGRAMA DE LA ASIGNATURA

Curso académico: 2025/2026

Identificación y características de la asignatura							
Código	401799				Créditos ECTS	6	
Denominación	Herramientas para Prototipado Rápido / Fast Prototyping Tools						
Titulaciones	Máster Universitario en Gestión de la Innovación Tecnológica						
Centro	Centro Universitario de Mérida						
Semestre	10	Caráct	er	Optativa			
Módulo	Tecnologías Emergentes						
Materia	Internet de las Cosas						
Profesor/es							
Nombre			Despacho	Correo-e	Página v	veb	
Antonio Astillero Vivas		14	aavivas@unex.es	Avuex			
Juan Ángel García Martínez		12	jangelgm@unex.es	Avuex			
Área de conocimiento	Arquitectura y Tecnología de los Computadores						
Departamento	Tecnología de los Computadores y las Comunicaciones						
Profesor coordinador (si hay más de uno)	Antonio Astillero Vivas						

Objetivos y Competencias

Objetivo principal: formar al alumno en las principales herramientas para diseño de sistemas embebidos basados en microcontroladores/microprocesadores.

Competencias Básicas

CB6 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

CB8 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida auto dirigido o autónomo.

Competencias Generales

- CG1 Conocer las posibilidades que ofrece la Innovación Tecnológica para el desarrollo profesional y el impacto económico.
- CG2 Desarrollar capacidad para aunar emprendimiento y tecnología para la creación de nuevos modelos de negocio.
- CG3 Dirigir y coordinar proyectos, grupos de trabajo y organizaciones en el campo de la Innovación Tecnológica en el ámbito

internacional.

Competencias Específicas

CEO18 Conocer las diferentes soluciones, características y ámbito de aplicación para prototipado electrónico rápido existentes en el mercado.

CEO19 Saber elegir la mejor plataforma que se adapte a un problema particular.

Competencias Transversales

CT9 Trabajar de forma autónoma.

Temas y contenidos

Breve descripción del contenido

Estudio y descripción de la principales herramientas para diseño de sistemas embebidos basados en microcontroladores/microprocesadores.

Temario de la asignatura

Teoría

Tema 1: Introducción a Arduino.

Contenidos del tema 1:

- 1.1 ¿Qué es Arduino?
- 1.2 Arduino Uno.
- 1.3 Instalación del entorno de programación.
- 1.4 Entorno de programación.
- 1.5 Primer sketch.

Descripción de las actividades prácticas del tema 1: Primeros pasos con Arduino y uso práctico del entorno de programación.

Tema 2: Lenguaje de programación Arduino (I).

Contenidos del tema 2:

- 2.1 General: aspecto, estilos, comentarios.
- 2.2 Las variables.
- 2.3 Operaciones.

Descripción de las actividades prácticas del tema 2: trabajo práctico con el lenguaje de programación de Arduino (básico).

Tema 3: Lenguaje de programación Arduino (II).

Contenidos del tema 3:

- 3.1 Bloques de control.
- 3.2 Funciones.
- 3.3 Include y define.
- 3.4 Juntando las piezas.

Descripción de las actividades prácticas del tema 3: trabajo práctico con el lenguaje de programación de Arduino (avanzado).

Tema 4: Arquitectura y hardware de Arduino.

Contenidos del tema 4:

- 4.1 Características del micro de la placa Arduino Uno.
- 4.2 Las memorias.
- 4.3 Los registros del microcontrolador.
- 4.4 Interrupciones en Arduino.

Descripción de las actividades prácticas del tema 4: trabajo práctico con el sistema de memoria, los registros y las interrupciones en Arduino.

Tema 5 (práctico): Programación de sensores y actuadores mediante registros y puertos de E/S en Arduino.

Descripción de las actividades prácticas del tema 5: trabajo práctico con la implementación y uso de sensores y actuadores en Arduino.

Tema 6: Arquitectura de Raspberry Pi.

Contenidos del tema 6:

- 6.1 Especificaciones del hardware de Raspberry Pi: CPU, GPU, pines GPIO.
- 6.2 Sistema de memoria.
- 6.3 Sistema de E/S.
- 6.4 Raspbian: el sistema operativo de Raspberry Pi.

Descripción de las actividades prácticas del tema 6: trabajo práctico con la utilización de los pines GPIO y con la instalación del sistema operativo Raspbian.

Tema 7 (práctico): Ejemplos prácticos en Raspberry Pi.

Descripción de las actividades prácticas del tema 7: trabajo práctico con la utilización de leds y sensores de movimiento conectados a los pines GPIO.

Actividades formativas							
Horas de trabajo del alumno por tema					No p	resencial	
Tema	Total	TCT	PLT	PLT	TA	TI	

1	11	5	0	0	5	1
2	11	5	0	0	5	1
3	11	5	0	0	5	1
4	11	5	0	0	5	1
5	29	0	8	0	20	1
6	22	10	0	0	10	2
7	46	0	10	0	34	2
Evaluación del conjunto	9	3	6	0	0	0
Total	150	33	24	0	84	9

TCT: Trabajo Contenido Teórico.

PLI: Realización de actividades prácticas en laboratorio de informática. PLT: Realización de actividades prácticas en laboratorios temáticos.

TA: Trabajo Autónomo.

TI: Tutorización individualizada.

Metodologías docentes

Enseñanza teórica: Aprendizaje a través del aula virtual. Uso de herramientas virtuales de comunicación entre profesor y estudiante para exposición de contenidos teóricos. Esta metodología se aplicará mediante videotutoriales o cualquier otra herramienta asíncrona.

Enseñanza práctica: Trabajos prácticos en laboratorios remotos y/o virtuales.

Tutorización: Actividad de seguimiento para tutela de trabajos dirigidos, consultas de dudas y asesoría individual o colectiva. Esta metodología se aplicará haciendo uso de despachos virtuales, foros y herramientas de comunicación síncronas.

Resultados de aprendizaje

El alumno será capaz de conocer los aspectos a tener en cuenta a la hora de interconectar dos subsistemas electrónicos y extraer la funcionalidad y las principales propiedades de los componentes electrónicos a partir de sus hojas de características (*datasheets*).

Sistemas de evaluación

Modalidad de evaluación continua

La evaluación estará dividida en dos bloques:

1º Tareas colaborativas: 30% de la nota. Actividad no recuperable.

La entrega de una tarea colaborativa desarrollada por todos los alumnos, en los que uno de ellos ejercerá de coordinador. Estas tareas permitirán asignar un 30% de la nota final y no son recuperables, es decir, es necesario entregarla en el periodo que se fije para ello.

2º Realización de trabajos dirigidos (informes, casos prácticos, ejercicios y problemas): 70% de la nota. Actividad recuperable.

Se realizarán prácticas a lo largo del curso. Para evaluar esta parte de la asignatura, el estudiante deberá realizar una entrega de cada práctica que será realizada y evaluada de forma individual. Este 70% de la nota se desglosa en:

Prácticas de Arduino: 50%Prácticas de Raspberry Pi: 50%

Sistemas de evaluación	Porcentaje		
Pruebas o cuestionarios en línea	30		
Realización de trabajos dirigidos	70		
(informes, casos prácticos,			
ejercicios y problemas			

Modalidad de evaluación global

El alumno deberá realizar al final del semestre un examen final correspondiente a la parte práctica. Dicho examen supondrá el 100% de la nota de la asignatura.

Bibliografía (básica y complementaria)

- Ribas J., "Arduino práctico", Ed. Anaya (1^a ed.), 2013.
- Banzi M., Shiloh M., "Introducción a Arduino", Ed. Anaya (1^a ed.), 2016.
- Dennis A. K., "Raspberry Pi Computer Architecture Essentials", Pack Publishing, 2016.
- Toulson R., Wilmshurst T., "Fast and Effective Embedded Systems Design: Applying the Arm Mbed", Ed. Newmes, 2012.

Sitio web de la asignatura: http://campusvirtual.unex.es/

Otros recursos y materiales docentes complementarios