

PLAN DOCENTE DE LA ASIGNATURA: MODELADO 3D CÓDIGO: 401796 CURSO ACADÉMICO: 2025-26

PROGRAMA DE LA ASIGNATURA

Curso académico: 2025-2026

Identificación y características de la asignatura								
Código	401796	Créditos ECTS	6					
Denominación(español)	Modelado 3D							
Denominación (inglés)	3D Modeling							
Titulaciones	Máster Universitario en Gestión de la Innovación Tecnológica							
Centro	Centro Universitario de Mérida							
Semestre	10 0	Carácter	Formación Optativa					
Módulo	Tecnologías Emergentes							
Materia	Desarrollo del Producto y Pensamiento Creativo							
Profesor/es								
Nombre		Despacho	Correo-e	Página web				
Lorenzo García Moruno		7	lgmoruno@unex.es	Platafor				
Agustín Domínguez Álvarez		4	adomguez@unex.es	ma CVUEX				
Área de conocimiento	Expresión Gráfica en la Ingeniería							
Departamento	Expresión Gráfica							
Profesor coordinador (si hay más de uno)	Lorenzo García Moruno							

Competencias

Competencias Básicas

CB4. Que los estudiantes sepan comunicar sus conclusiones (y los conocimientos y razones últimas que las sustentan) a públicos especializados y no especializados de un modo claro y sin ambigüedades.

Competencias Generales

CG1. Conocer las posibilidades que ofrece la Innovación Tecnológica para el desarrollo profesional y el impacto económico

Competencias Específicas

CEO4: Capacidad para capturar y ajustar texturas de los objetos

CEO5: Conocer y usar los diferentes formatos de gestión de los objetos 3D

CEO6: Capacidad para construir modelos 3D virtuales de objetos y escenas, estáticos y dinámicos

CEO7: Capacidad para generar fotorrealismo en imágenes fijas y videos

CEO11: Capacidad para diseñar sólidos y superficies en formato paramétrico

Competencias Transversales

CT2: Resolver problemas

CT9: Trabajar de forma autónoma

Contenidos

Breve descripción del contenido

Generación y edición de geometría. Iluminación y edición de materiales. Renderizado. Animación. Motores Gráficos.

Temario de la asignatura

Tema 1: Introducción al CAD/CAE en 3D

Definición de Modelado 3D. Metodologías para su realización. Geometría de referencia para el Modelado 3D. Creación y gestión de planos de trabajo, ejes, sistemas de coordenadas y puntos. Formas, Primitivas y Transformaciones. Materiales.

Tema 2: Sólidos

- 2.1. Entorno y Croquización I
- 2.2. Croquización II
- 2.3. Extrusión. Revolución
- 2.4. Redondeado, Chaflán, Vaciado, Nervio
- 2.5. Barrido. Recubrir
- 2.6. Matrices, Simetría, Escala, Forma Libre, Envolver
- 2.7. Propiedades Físicas. Introducción a la Verificación Mecánica

Tema 3: Superficies

- 3.1. Modelado de superficies (subdivisión, poligonal y NURBS).
- 3.2. Mapeado (texturas y materiales).
- 3.3. Modificadores.
- 3.4. Iluminación.
- 3.5. Cámaras.
- 3.6. Motores gráficos y Renderizado.
- 3.7. Animación.

Contenido práctico

- 1. Modelo 3D de un trenecito de madera (uso de superficies, mapeados, modificadores e iluminación).
- 2. Modelos 3D de un escenario para el trenecito (uso de objetos de utilería, cámaras, renderizado y animación)
- 3. Modelado 3D de Sólidos

Actividades formativas

Horas de trabajo del alumno por tema			Actividades					
Tiorus de trabajo dei diamno por tema		CVS		CVA		TVS	TVA	TA
Tema	Total	T	Р	Т	Р			
1	19	1	1	2	4	1		10
2	62	1	1	10	18	7		25
3	62	1	1	10	18	7		25
Prueba	7		-		-	-		7
Evaluación del conjunto	150	6 (3	3+3)	62 (2	2+40)	15		67

CVS: Clase virtual síncrona. Actividad docente que se desarrolla a través de una interacción entre profesorado y estudiantes, que requiere la coincidencia de ambos al mismo tiempo (presencia síncrona), utilizando las herramientas tecnológicas de comunicación que permitan dicha interacción como, por ejemplo, chat y videoconferencia, entre otras.

CVA: Clase virtual asíncrona. Actividad docente en la que profesorado y estudiantes interactúan, de manera flexible, en momentos temporales distintos. Para el desarrollo de esta actividad docente se pueden combinar diferentes recursos educativos haciendo uso de las TIC.

TVS: Tutoría virtual síncrona. Explicación personalizada en grupos reducidos sobre los conocimientos y aplicaciones mostradas en las clases teóricas y de problemas, Seguimiento individual o grupal de estudiantes a través de herramientas de comunicación síncrona (chat, videoconferencia...)

TVA: Tutoría virtual asíncrona. Seguimiento individual o grupal de estudiantes a través de herramientas de comunicación asíncrona (correo electrónico, foros, etc.).

TA: Trabajo autónomo. Autoaprendizaje, estudio personal, elaboración de informes de prácticas, trabajos o relaciones de problemas propuestas por el equipo docente y preparación de exámenes.

Metodologías docentes

- 1. **Aprendizaje a través del aula virtual**. Uso de herramientas virtuales de comunicación entre profesor y estudiante para exposición de contenidos teóricos. Esta metodología se aplicará mediante video-tutoriales o cualquier otra herramienta asíncrona
- 2. **Enseñanza práctica**: Seminarios, proyectos y trabajos prácticos síncronos, asíncronos o en laboratorios remotos y/o virtuales.
- 3. **Tutorización**: Actividad de seguimiento para tutela de trabajos dirigidos, consultas de dudas y asesoría individual o colectiva. Esta metodología se aplicará haciendo uso de despachos virtuales, foros y herramientas de comunicación síncronas.
- 4. **Actividad autónoma** mediante el análisis de documentos escritos, la elaboración de memorias, el estudio de la materia impartida, desarrollo de los supuestos prácticos planteados y tareas propuestas evaluables.

Resultados de Aprendizaje

Ser capaz de realizar nuevas geometrías complejas mediante la ayuda del diseño asistido por ordenador

Sistemas de evaluación

La nota final de la asignatura será la suma de los tres instrumentos de evaluación siguientes:

Sistemas de evaluación y calificación de la materia			Rec.*
1.	Pruebas o cuestionarios en línea	20	SI
2.	Realización de trabajos dirigidos (informes, casos prácticos, ejercicios y problemas	50	SI
3.	Exposición de trabajos mediante videoconferencia y/o videograbaciones	30	NO

^{*}Recuperable: Actividad que computará en la nota de cada una de las convocatorias de examen

Se aplicará el sistema de calificaciones vigente en cada momento; actualmente, el que aparece en el RD 1125/2003, artículo 5º. Los resultados obtenidos por el alumno en cada una de las materias del plan de estudios se calificarán en función de la siguiente escala numérica de 0 a 10, con expresión de un decimal, a la que podrá añadirse su correspondiente calificación cualitativa: 0 - 4,9: Suspenso (SS), 5,0 - 6,9: Aprobado (AP), 7,0 - 8,9: Notable (NT), 9,0 - 10: Sobresaliente (SB). La mención de Matrícula de Honor podrá ser otorgada a alumnos que hayan obtenido una calificación igual o

superior a 9.0. Su número no podrá exceder del 5 % de los alumnos matriculados en una asignatura en el correspondiente curso académico, salvo que el número de alumnos matriculados sea inferior a 20, en cuyo caso se podrá conceder una sola Matrícula de Honor.

Única prueba final de carácter global

(según normativa de Evaluación de la UEx, opción seleccionada por el alumno y comunicada en las tres primeras semanas del curso)

Aquellos alumnos que, por causas de fuerza mayor, no pudieran acceder a la evaluación continua y así lo indiquen en las 3 primeras semanas del semestre de acurdo con la normativa vigente (Art.4.6), serán evaluados en una prueba final alternativa de carácter teórico-práctico sobre todas las competencias de la asignatura.

Esto NO eximirá al alumno de la realización de la/s práctica/s y o trabajo/s obligatorios imprescindibles para la adquisición de las competencias de la asignatura que serán previamente indicadas por los profesores.

Bibliografía (básica y complementaria)

Bibliografía Básica

Gómez González, Sergio (2008). 'Solidworks'. Editorial Marcombo.

Pensado para alumnos de Ingenierías Industriales con numerosos ejercicios comentados y teoría explicada de forma clara y completa. Libro recomendable por su exposición completa, didáctica, clara y precisa. Abundantes casos y soluciones que facilitan el aprendizaje.

Gómez González, Sergio (2012). 'Solidworks Práctico I; Pieza, Ensamblaje y Dibujo'. Editorial Marcombo.

El libro SolidWorks Práctico Volumen I se divide en tres partes: Pieza, Ensamblaje y Dibujo. En cada una de ellas se presentan distintas prácticas guiadas paso a paso, con un nivel creciente en dificultad y con la introducción de nuevas funcionalidades. La distribución de las prácticas se ha realizado pensando en un estudiante o diseñador novel que desea introducirse en el diseño tridimensional con SolidWorks® con el objeto de crear máquinas, mecanismos, productos, o modelos.

Milton Chanes "3Ds Max 2013" Colección Diseño y Creatividad. Anaya Multimedia Libro eminentemente práctico que aborda con todo detalle muchos de los conceptos más importantes acerca de este programa. Además, también trae un CD-ROM con numerosos ejemplos y tutoriales.

Otros recursos y materiales docentes complementarios

Páginas web

Con enunciados para practicar:

- http://recursostic.educacion.es/descartes/web/
- http://trazoide.com/
- http://www.dibujotecnico.com/index.php

Modelados de superficies

 http://help.autodesk.com/view/3DSMAX/2016/ESP/?guid=GUID-C7F01818-502C-499B-8FD5-1F6742298DC7

Estudio de iluminación

http://www.simes.it/es/

App recomendadas

eDrawings: como visor de Modelos 3D

https://play.google.com/store/apps/details?id=com.solidworks.eDrawingsAndroid&hl=es

Portales de noticias de tecnología 3D:

- http://www.noticias3d.com
- https://www.artec3d.com/es/news

Recomendaciones

Empleo frecuente de la plataforma CVUEX